Tutorial 5

In the following problems, V denotes a finite-dimensional inner product space.

- 1. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$ is normal. Prove that T is a projection if and only if the eigenvalues of T are contained in $\{0, 1\}$.
- 2. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$ is normal with all real eigenvalues. Show that T is self-adjoint.
- 3. Let $T_1, T_2 \in \mathcal{L}(V)$ be self-adjoint operators with identical eigenvalues and multiplicities. Show there exists an isometry $S \in \mathcal{L}(V)$ such that $T_1 = S^*T_2S$.
- 4. Suppose $T \in \mathcal{L}(V)$ is positive and $T^2(v) = v$. Prove that T(v) = v.
- 5. Let V be the inner product space of real-valued continuous functions on [0, 1] with inner product

$$\langle f,g \rangle = \int_0^1 f(x)g(x) \ dx$$

Given fixed $p \in V$ define $T_p \in \mathcal{L}(V)$ as $T_p(f) = pf$.

- (a) For which functions p is T_p a positive operator?
- (b) For which functions p is T_p an isometry?
- 6. Suppose $\mathbb{F} = \mathbb{C}$. Prove $T \in \mathcal{L}(V)$ is normal if and only if $T^* = f(T)$ for some polynomial f.
- 7. A linear operator $T \in \mathcal{L}(V)$ is a *kinda-isometry* if there exists a subspace $U \subseteq V$ such that $\langle T(u_1), T(u_2) \rangle = \langle u_1, u_2 \rangle$ for all $u_1, u_2 \in U$ and T(v) = 0 for all $v \in U^{\perp}$.
 - (a) Why is this definition different from saying " $T|_U$ is an isometry on U and $T|_{U^{\perp}} = 0$ "?
 - (b) Show that if T is a kinda-isometry then $T^*T = P_U$.
- 8. A translation on V is a function $t: V \to V$ of the form

$$t(x) = x + v$$

where $v \in V$ is some fixed element. A rigid transformation on V is a function $r: V \to V$ such that for all $x, y \in V$,

$$||r(x) - r(y)|| = ||x - y||$$

Note that translations and isometries are rigid transformations. Classify all rigid transformations when $\mathbb{F} = \mathbb{R}$.