Tutorial 5

In the following problems, V denotes a finite-dimensional inner product space.

1. Suppose $\mathbb{F}=\mathbb{C}$ and $T \in \mathcal{L}(V)$ is normal. Prove that T is a projection if and only if the eigenvalues of T are contained in $\{0,1\}$.
2. Suppose $\mathbb{F}=\mathbb{C}$ and $T \in \mathcal{L}(V)$ is normal with all real eigenvalues. Show that T is self-adjoint.
3. Let $T_{1}, T_{2} \in \mathcal{L}(V)$ be self-adjoint operators with identical eigenvalues and multiplicities. Show there exists an isometry $S \in \mathcal{L}(V)$ such that $T_{1}=S^{*} T_{2} S$.
4. Suppose $T \in \mathcal{L}(V)$ is positive and $T^{2}(v)=v$. Prove that $T(v)=v$.

5 . Let V be the inner product space of real-valued continuous functions on $[0,1]$ with inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

Given fixed $p \in V$ define $T_{p} \in \mathcal{L}(V)$ as $T_{p}(f)=p f$.
(a) For which functions p is T_{p} a positive operator?
(b) For which functions p is T_{p} an isometry?
6. Suppose $\mathbb{F}=\mathbb{C}$. Prove $T \in \mathcal{L}(V)$ is normal if and only if $T^{*}=f(T)$ for some polynomial f.
7. A linear operator $T \in \mathcal{L}(V)$ is a kinda-isometry if there exists a subspace $U \subseteq V$ such that $\left\langle T\left(u_{1}\right), T\left(u_{2}\right)\right\rangle=\left\langle u_{1}, u_{2}\right\rangle$ for all $u_{1}, u_{2} \in U$ and $T(v)=0$ for all $v \in U^{\perp}$.
(a) Why is this definition different from saying " $\left.T\right|_{U}$ is an isometry on U and $\left.T\right|_{U^{\perp}}=0$ "?
(b) Show that if T is a kinda-isometry then $T^{*} T=P_{U}$.
8. A translation on V is a function $t: V \rightarrow V$ of the form

$$
t(x)=x+v
$$

where $v \in V$ is some fixed element. A rigid transformation on V is a function $r: V \rightarrow V$ such that for all $x, y \in V$,

$$
\|r(x)-r(y)\|=\|x-y\|
$$

Note that translations and isometries are rigid transformations. Classify all rigid transformations when $\mathbb{F}=\mathbb{R}$.

